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On the calculation of the dielectric relaxation times of a nematic 
liquid crystal from the non-inertial Langevin equation 

by W. T. COFFEY* 
School of Engineering, Trinity College, Dublin 2, Ireland 

and YU. P. KALMYKOV 
Institute of Radio Engineering and Electronics of the Russian Academy of Sciences, 

Vvedenskii Sq 1, Fryazino, Moscow Region, 141120 Russia 

The theory of dielectric relaxation of uniaxial nematic liquid crystals is 
developed without recourse to the Fokker-Planck equation by direct averaging of 
the non-inertial Langevin equation for the rotational brownian motion of the linear 
molecule in a mean-field nematic potential. The non-inertial equation is regarded as 
a non-linear Stratonovich stochastic differential equation. The molecular equations 
for the average values of the dipole moment components so obtained involve both 
the nematic field and a suddenly applied weak DC measuring field. The equations 
are linearized in the DC field so that the AC response may be found by linear 
response theory. The Laplace transform of the equations is closed by a procedure 
which corresponds exactly to the effective eigenvalue method. It allows one to 
obtain formulae valid for all barrier heights for the longitudinal z ,, and transverse zI 
relaxation times for an arbitrary uniaxial nematic potential in terms of the order 
parameter. The complex susceptibility induced by a weak AC field applied parallel 
and perpendicular to the axis of symmetry is also calculated. 

1. Introduction 
The theory of dielectric relaxation of nematic liquid crystals due to Martin et al. [ 11 

proceeds from the Fokker-Planck equation without explicit reference to the underly- 
ing Langevin equation. Their aim is to extend the Debye theory of dielectric relaxation 
of assemblies of non-interacting polar molecules subjected to a weak alternating (AC) 
field to include the effects of a strong intermolecular potential giving rise to the nematic 
state. The AC response is usually obtained indirectly from linear response theory [2] by 
considering the response to a small DC step field. 

The essence of the diffusion equation method [3] is to write down the particular 
form of the Fokker-Planck equation known as the Smoluchowski equation, for the 
transition probability of orientations of dipoles in configuration space. This is solved 
[ 11 by the method of separation of the variables. The separation procedure gives rise to 
an equation of Sturm-Liouville type [3] in the space variable which is related to 
Legendre’s equation. The reciprocal of the lowest eigenvalue of the Sturm-Liouville 
equation yields the longest relaxation time of the probability density of orientations. 
Furthermore on expanding the dipole moment as a series of eigenfunctions of the 
Sturm-Liouville equation and averaging over the distribution function the orient- 
ational polarization may be expressed [3] as an infinite set of discrete Debye type 
relaxation mechanisms with relaxation times and amplitudes determined by the 
eigenvalues of the Sturm-Liouville equation. Approximate analytic solutions for the 

* Author for correspondence. 

0267-8292/93 $1000 0 1993 Taylor & Francis Ltd. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
1
:
2
0
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



1228 W. T. Coffey and Yu. P. Kalmykov 

lowest eigenvalue of the distribution function may be found for high and low nematic 
potential barriers [l]. We shall call the Sturn-Liouville method Method I. This is 
commonly used [4] in the study of nematic liquid crystals. 

An alternative approach to the problem [ 5 ]  is to expand the transition probability 
as a series of spherical harmonics. This yields the time behaviour of the transition 
probability as an infinite hierarchy of differential-difference equations. The lowest 
order member of the hierarchy governs the time dependence of the polarization but is 
coupled to all the higher members by the differentialdifference scheme, thus giving an 
infinite number of relaxation modes. In the frequency domain the hierarchy may often 
be written as an infinite continued fraction which facilitates its solution. The most 
general method of solution is effected by converting the hierarchy into the set of 
ordinary differential equations [S] 

S=AX+BU (1) 
and successively increasing the size of the system matrix A [3,5] by means of the 
recurrence relations of the hierarchy until convergence is attained. The reciprocal of the 
lowest eigenvalue of this set yields the longest relaxation time of the system of equations 
(1). We shall call this Method 11. 

Method I based on the Sturm-Liouville equation has also been used in the study of 
the Nee1 relaxation process in ferromagnetic domains in conjunction with various 
asymptotic methods [6] in order to obtain analytic solutions for the lowest eigenvalue 
of the distribution function for high and low anisotropy. Having assumed that the 
contribution of higher order eigenvalues to the polarization may be neglected so that it 
can be described by a single eigenvalue it is further assumed that the reciprocal of the 
lowest eigenvalue may be identified with the Ntel relaxation time characterizing a flip 
of the magnetization [6]. Both Methods I and I1 have been used in [7] in conjunction 
with linear response theory [S] in the study of the dispersion of the magnetic 
susceptibility of fine ferromagnetic particles. 

The disadvantage of the diffusion equation method is that in all the applications 
one first has to derive that equation from the Chapman-Kolmogorov equation in 
curvilinear coordinates and the underlying Langevin equation. Next one has either to 
use elaborate mathematical formulae involving spherical harmonics in order to deduce 
the set of differentialdifference equations or else one must study the properties of 
Sturm-Liouville equations the solution of which cannot generally be given in terms of 
known functions. In both methods it is impossible to identify the longest relaxation 
time with that of the polarization unless the effect of the nematic potential may be 
ignored, neither is it possible to easily generalize the results to an arbitrary nematic 
potential. 

It is the purpose of this paper to show how the differential-difference equations 
(alluded to above Method 11) for a nematic liquid crystal for the Meier-Saupe potential 
arise naturally from the non-inertial Langevin equation written in vector form and 
defined as a Stratonovich equation thus bypassing the diffusion equation entirely. 
Having derived the differentialdifference equations by averaging the Langevin 
equation it is then shown how closed form expressions of the Debye type valid for all 
barrier heights may be obtained for the complex susceptibility. The results are given for 
an AC field applied parallel and perpendicular to the axis of symmetry. The 
corresponding relaxation times for each field direction are given in terms of the order 
parameter for an arbitrary uniaxial nematic potential. The availability of all these 
expressions rests on the assumption that the contribution to the dynamical behaviour 
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Calculation of dielectric relaxation times 1229 

of all processes which occur on a timescale < 2,/3 where z,, is the Debye relaxation time 
may be adequately approximated by their equilibrium values. The above assumption 
may be stated more precisely as that in the Laplace transform of the equation 
describing the behaviour of the mean dipole moment the ratio of the Laplace 
transforms of the averages may be replaced by their zero frequency values.‘ It 
corresponds to the effective eigenvalue method described by San Miguel e t  al. [ 9 ] ,  i.e. 
A,,, which gives precise details of the initial decay of the polarization. The growth and 
decay of the mean dipole moment is thus characterized by a single exponential with a 
relaxation time (the reciprocal of the effective eigenvalue A,,,) which is a function of the 
nematic potential so allowing a precise definition of the term ‘relaxation time of the 
polarization’ when an external potential is present. The effective eigenvalue may also be 
defined in terms of the eigenvalues of the Sturm-Liouville equation. It is however, very 
difficult to evaluate A,,, from that equation as a knowledge of the law of formation of the 
eigenvalues and their corresponding amplitudes is required. Such information is rarely 
available. The method to be described here avoids this difficulty by expressing the 
effective eigenvalue in terms of the equilibrium order parameter. 

2. The non-inertial Langevin equation for a nematic liquid crystal 
We study the rotational brownian movement of a linear molecule subject to the 

mean nematic field E ,  and external electric field E,(t) .  The molecule contains a rigid 
electric dipole p along the axis of symmetry. The angular velocity o ( t )  of the molecule 
satisfies the kinematic relation [&lo] 

ddt’=o(t) x p(t). dt  

We specialize equation (2)  to the rotational brownian motion of a molecule by 
supposing that o obeys the Euler-Langevin equation 

In equation ( 3 )  I is the moment of inertia of the molecule about any line through the 
origin perpendicular to the line of symmetry, (o is the damping torque due to brownian 
movement and A(t) is the white noise driving torque, also due to brownian movement so 
that A(t) satisfies the relations 

~ 

ni( t )  = 0, 
and 

Ai(t)Aj(t’) = 2kT(bij6(t - 

(4) 

( 5 )  
where 6 ,  is Kronecker’s delta, i ,  j = 1,2,3,  which correspond to Cartesian axes; (x, y, z), 
fixed in the molecule. This is the assumption that the random torques about different 
axes are statistically independent. 6( t )  is the Dirac delta function. The term p x E(t), in 
equation (3), is the torque due to the nematic mean field E, and externally applied field, 
i.e. E(t )  = E ,  + E,(t) .  The overbar means ‘statistical average of’. 

Equation (3) includes the inertia of the molecule. The non-inertial response is the 
response when I tends to zero or when (, the friction coefficient, becomes very large. In 
this limit the angular velocity vector is 
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1230 W. T. Coffey and Yu. P. Kalmykov 

We combine this with the kinematic relation (see equation (2)) yielding 

dP(t)  4 t )  + {a(t) x W)) x _- 
dt 5 5 > 

or 

(7) 

which is the Langevin equation for the rotational motion of the dipole moment p of the 
molecule in the non-inertial limit. 

3. Averaged equations of motion 
Let us suppose that the molecule is under the influence of a mean nematic field Eo = 

-grad r! where V(9) is the nematic potential. We confine ourselves to a uniaxial 
potential, where Eo has only a k component. Hence 

Let us suppose that at t = 0 a small field El U(t), where U(t )  is the unit step function is 
applied along the z axis, so that 

E(t)=Eo+EIU(t)k (9) 
equation (8) then becomes, with the aid of equation (9) 

Equations (lOH12) contain multiplicative noise terms; Aipy Risken [l 11 has shown, 
taking the Langevin equation for N stochastic variables {t} = {tl, t2, t3,. . . , tN} as 

ti=hi({t}, s + ~ i j ( { t > ,  t)rit),  (13) 
with 

rit, = 0, 

ri(t)rj(t’) = 26,qt - t’) 

and interpreting it as a Stratonovich [ll] equation, that the drift coefficient is 

Di( {x}, t )  = )ii =lim 
Z-+O 

(15) 
a 

= hi( (x}, t )  -f gk,({x}, t)  ~ gij({ t), k = 9 2, . . . 2 N .  

The last term in equation (15) is called the noise-induced or spurious drift [ll]. In 
equation 715) t i ( t  + z) (z > 0) is a solution of equation (13) which has the sharp value 
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Calculation of dielectric relaxation times 1231 

<k(t) = x, for k = 1,2,. . . , N .  It should be noted that the quantities xk in equation (1 5 )  are 
themselves random variables with the probability density function W ( { x } ,  t )  defined 
such that Wdx, is the probability of finding xk in the range x ,  to xk+dx, .  

We now use this theorem to evaluate the average of the multiplicative noise terms in 
equation (12). We have 

which is the noise-induced drift. We must now further average equation (16) over the 
density distribution function W({p}, t )  of dipole orientations in configuration space at 
time t .  On performing this average equation (16) then becomes -(2kT/5)(p2) where 
the symbol (f) denotes averaging a function f over the density function W({p}, t )  
namely (f(p)) = S f ( {p} )W({p} ,  t )dp .  Thus the averaged equation of motion of the 
dipole is 

In the transverse case the step change in the field is applied parallel to the x axis so 
that we need to determine the behaviour of ( p x ) .  We find as before that the x 
component of the dipole moment satisfies 

4. The relaxation times for an arbitrary uniaxial nematic potential 
The calculation of the relaxation times can be carried out by means of a procedure 

which has been used by Morita [13] in conjunction with the Fokker-Planck equation. 
A similar approach may be used in the context of the averaged Langevin equation as has 
been demonstrated in [ 8 ]  in connection with the simpler problem of the linear response 
in the presence of an DC bias field. This is the [9] effective eigenvalue method. The goal 
of this method is to describe the system by a single effective eigenvalue which [9] 
contains the weighted contribution of all the other eigenvalues. 

We first consider the equation of motion of (p,). We suppose that a small field E,( t )  
= E,(t)k is applied along the z axis at time t = 0. We require as before the linear response 
to E,( t ) .  We therefore assume that ( p z )  and ( E 0 ( p 2 - - p : ) )  can be represented as 

(A)  = ( P z ) 0  + ( P Z ) l ,  

( E o ( P 2  - P 3 >  = (Eo(p2  - 1 1 3 0  + (Eo(cL2 -P%3 

(19) 

(20) 

where the subscript 0 denotes the equilibrium ensemble average in the absence of the 
field E,( t )  viz. 

((. . .)),, =Izn  Iff (. . .)Wo(9) sin 9 d 9 d 4 ,  
0 0  

Wo(9)=Cexp -~ ( z) 
is the equilibrium distribution function, 9 and 4 are the polar and azimuthal angles 
respectively and C is the normalizing constant, and the subscript 1 denotes the portion 
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1232 W. T. Coffey and Yu. P. Kalmykov 

of the ensemble average which is linear in E,(t) .  Thus we have, from equations (17), (19) 
and (20), 

The characteristic equation of the system then becomes (see for detail [S]) 

where the symbol L means the Laplace transform 

Lf= { exp ( - s t ) f ( t )  dt. 
0 

If we suppose, again following Morita [13], that 

- P,2)>1- - L(E0(PZ - P 3 )  - L(Eo(PFL2 - P%O 

L(PZ) ,  U P , )  - L ( P 2 ) O  

may be replaced by its final (equilibrium) value (i.e. its value as t tends to infinity) 
namely 

SL(Eo(P2 -P31 = lim (Eo(P2 - P 3 )  1 lim 
2-m <Pz>l s+o sL<Pz)l 

> 

equation (22) may then be evaluated as follows. At equilibrium (t+ 00) 

(23) El 
(PZ) = ( P z ) o  +#Pi)O - (PZ):)? 

by equation (19) et seq. [14], likewise 

( ~ o ( ~ z - ~ , 2 ) ) = ( E O ( ~ 2 - ~ j l : ) ) 0 + ~ ( E O ( c o s 9 - ( ~ o s ~ ) 0 ) ( 1 - c o s z S ) ) 0 .  (24) 

The second term on the right hand side of equation (24) can be evaluated to yield 

(E,(cos 9- (cos 9),)(1 -cos2 9))o 

kT 
P 

= -- [ I -  ~ ( C O S ~  9)o + ~ ( c o S  $):I. 

In the nematic phase (cos 9)o is equal to zero. Substituting equation (25) into (24) we 
obtain 

( ~ ~ ( p ~ - ~ j l : ) =  ( E ~ ( P ~ - P , ~ ) ) ~ - ~ ~ ( P ~ - ~ ~ ( P L , ~ ) ~ ) .  (26) 

The effective eigenvalue All with this procedure is then 

1 - 2 - 1 - ( - 1  (Eo(P2 - P 3 )  - (EO(P2 - P 3 ) o  
(PZ) - (P20 I I -  D 

1 - (cos2 S), 
(cos2 9)o . = (22,) - 
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Calculation of dielectric relaxation times 1233 

We have used equations (23) and (26) here. Thus the longitudinal relaxation time 
z II = 1 may be expressed in terms of the equilibrium averages as 

where P ,  is the Legendre polynomial of order 2 [12], S = (F'2)o is the order parameter. 
We now calculate the transverse relaxation time zl. We consider the same problem 

as above but this time the step change in the field E,(t)=iU(t)E,(t)  is applied parallel to 
the x axis so that we need to determine the behaviour of (px) from equation (18). We 
find just as before that the eigenvalue equation is 

Now 
P2El P% (px)r-(sin2 $cos2@),=-(1 -(cosz $)& kT 2kT 

Thus the effective eigenvalue A1 is given by 

Whence the transverse relaxation time zl = 1; may be expressed in terms of the 
equilibrium averages as 

1 - (cos2 9)o 1-s  
22, = 22, - 

1 + (COSZ 9)o 2 + s' (34) 

It should be noted that equations (28) and (34) for the relaxation times z l l  and zl are 
valid for any axially symmetric potential of the crystalline anisotropy. 

The retardation factors gI1 and g, defined by 

zil =gIIzD) zl=glzD (35) 
may now be expressed entirely in terms of the order parameter S as 

2 s +  1 2-2s 
91=- 911 =l-s' 2 + S '  

It should be noted that one can deduce from equation (36) two quite general 
relationships between the retardation factors: 

5. Calculation of the frequency dependence of the susceptibility 
Having determined the effective relaxation times for transverse and longitudinal 

According to equation (21) the decay transient of the polarization 
fields, we may calculate the complex susceptibility as follows. 

p 1 1  ( t )  = N ( P z )  1, (38) 
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1234 W. T. Coffey and Yu. P. Kalmykov 

(where N is the number of molecules per unit volume) following the removal of El@) at 
t = O  is 

(39) p ,I@) = El Wxyl exp ( - t / z  1 1  ), 

where 

is the static susceptibility. 
The after effect functionfil(t) [2] is thus 

fil(t) = xy1 exp ( - t l z  I] ). 
The frequency-dependent longitudinal component of the complex susceptibility 

x ll(o) = xiI(w) - ix' i(o) arising from the imposition of an AC field E,(t) -exp (iwt) may 
then be written down (since we have limited the solution to terms linear in El) from 
linear response theory [2] as 

We then find just as for the parallel case that the complex susceptibility x,(w) for a small 
transverse field E,(t)-exp (iot) is 

"S 

where the static susceptibility 1; is given by 

6. Discussion and conclusions 
We have shown how general formulae for z l l  and z, (valid for an arbitrary uniaxial 

potential of the crystalline anisotropy) may be calculated directly in terms of the 
equilibrium order parameter S from the Langevin equation. That equation being 
regarded as a stochastic nonlinear equation of the Stratonovich type. This eliminates 
the complicated mathematical analysis which arises from the Fokker-Planck equation. 
Our approach is based on a well-defined method (that of Morita [I 31 or the effective 
eigenvalue [9]) of reducing the nth order characteristic equation of the system to one of 
the first order. The relaxation of the polarization components is thus characterized by a 
single effective eigenvalue or weighted decay rate so allowing a precise definition of the 
term 'relaxation time of the polarization' when an external potential is present. The 
effective eigenvalues All and 1, give precise information on the initial decay of the 
polarization components. 

Equation (36) is in qualitative agreement with available experimental data (see, for 
example, [16]) and with previous theoretical estimates [l, 15,171, from which it follows 
that the relaxation time zll increases and z, decreases in nematic liquid crystals as 
compared to the Debye relaxation time in the isotropic phase. 
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Calculation of dielectric relaxation times 1235 

The effective eigenvalue may be defined in the context of the Sturm-Liouville 
equation as [9] 

where & and c k  are the eigenvalues and their corresponding weight coefficients 
(amplitudes). We reiterate that it is usually very difficult to evaluate Aeff from this 
formula using the Sturm-Liouville equation as a knowledge of the law of formation of 
the eigenvalues and their corresponding amplitudes is required. The approach we have 
used in this paper just as in [9] does not attempt to calculate Aeff by explicitly 
calculating the eigenvalue spectrum as required by equation (45) rather it gives Aeff in 
terms of the equilibrium average S.  It should be noted that a global characterization of 
the polarization decay is given by the relaxation times and T,, defined as 

As noted in [9] this correlation time also includes contributions from all the eigenvalues, 
but it gives no information on possible different time regimes of relaxation. The 
behaviour of T, and zy is sometimes similar. In fact, if a single eigenvalue dominates the 
relaxation of the polarization, Ty = zy. However if different time scales are involved, the 
behaviour of T, and zy can be different [9] and in this case zy gives precise information 
on the initial relaxation of the polarization. 

In view of the difficulties associated with the Sturm-Liouville equation it is often 
assumed that the longest relaxation time of the distribution function accurately 
represents that of the polarization. This is true only if a single eigenvalue determines the 
relaxation process. In all other cases the reciprocal of the effective eigenvalue yields a 
more accurate description of the relaxation process since it includes the weighted 
contributions from all the other eigenvalues associated with the relaxation. Note that 
equation (28) was originally given by Meier [18] for the special case of a cos29 
potential. 

We thank Professors M. I. Shliomis and M. San Miguel for helpful discussions. The 
support of this work by the Institute of Radio Engineering and Electronics of the 
Russian Academy of Sciences, the British Council and the TCD Trust is gratefully 
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